OCCURRENCE OF SOME MONO-CIS-ISOMERS OF ASYMMETRIC C₄₀-CAROTENOIDS

GYULA TOTH and JOZSEF SZABOLCS

University Medical School, H-7643 Pécs, Hungary

(Received 16 March 1981)

Key Word Index—Lilium candidum; Liliaceae; Calendula officinalis; Helianthus annuus; Helianthus debilis; Chrysanthemum indicum; Compositae; Citrus aurantium; Rutaceae; 9-cis-antheraxanthin; 9-cis-lutein epoxide.

Abstract—The 9-cis-isomers of antheraxanthin [(3S,5R,6S)-5,6-epoxy-5,6-dihydro- β , β -carotene-3,3'-diol] and lutein epoxide [(3S,5R,6S,3'R,6'R)-5,6-epoxy-5,6-dihydro- β , ε -carotene-3,3'-diol] were found to occur without their 9'-cis counterparts in the non-photosynthetic tissues of several higher plants. 9-cis-lutein [(3R,3'R,6'R)- β , ε -carotene-3,3'-diol], on the other hand, was observed together with its 9'-cis counterpart in the samples investigated. The qualitative distribution of carotenoids is also reported.

INTRODUCTION

Iodine-catalysed stereomutation of constitutionally asymmetric C40-carotenoids was found to give four mono-cis-isomers [1], which was ascribed to the nonequivalence of positions C-9 and C-9', C-13 and C-13' (excluding the central mono-cis form). ¹³C NMR spectroscopy had provided unambiguous stereochemical assignment for the isolated mono-cis-isomers ([2]; Molnár, P., Szabolcs, J. and Radics, L., unpublished results). Thus on the basis of the existence, in equilibrium mixtures, of the 9-, 9'-, 13-, 13'-cis-isomers of antheraxanthin $\lceil (3S, 5R, 6S, 3'R) - 5, 6$ -epoxy-5,6-dihydro- β,β -carotene-3,3'-diol], capsanthin [(3R,3'S,5'R)-3,3'dihydroxy- β , κ -carotene-6'-one], lutein [(3R,3'R,6'R)- β , ε carotene-3,3'-diol] and lutein [(3S,5R,6S,3'R,6'R)-5,6-epoxy-5,6-dihydro- β , ε -carotene-3,3'-diol], we have made a systematic search to prove their existence or non-existence in nature. Although there have been many reports [3-9] on the occurrence of mono-cisisomers derived from asymmetric all-trans compounds, it has never been clarified whether 9-cis or 9'-cis or both, 13cis or 13'-cis or both isomers are present in the sample investigated.

RESULTS AND DISCUSSION

As the mono-cis-isomers of the asymmetric C_{40} -carotenoids at our disposal belong to the higher oxidized pigments and the amount of the naturally occurring next-to-central isomers (13/13'-cis) is too small for further separation, our study was limited to non-photosynthetic tissues of higher plants, on the one hand, and to the occurrence of only the peripheral (9/9'-cis)-isomers on the other.

Tables 1 and 2 show the distribution of the mono-cisisomers and the all-trans forms in anthers, petals and fruits, and for comparison, the compositions of the iodinecatalysed equilibrium mixture of the corresponding carotenoid pigment. The analyses have revealed the following:

- (a) 9-cis-antheraxanthin (2) always occurs as a single peripheral isomer. Its 9'-cis counterpart (1) has not been detected;
- (b) 9-cis-lutein epoxide (4) is present, as a single peripheral isomer in all cases except one in which its 9'-cis counterpart (3) is preponderant;
- (c) 9-cis antheraxanthin (2) occurs together with 9-cislutein epoxide (4) without their 9'-cis counterparts (1,3) in Calendula;
- (d) in general, 9-cis epoxides occur in larger quantity than the corresponding all-trans forms;
- (e) 9-cis-lutein (6) and 9'-cis-lutein (5) always appear together in about the same percentage;
- (f) the proportions of 9-cis- and 9'-cis-isomers in native samples are different from those in the equilibrium mixtures obtained by iodine catalysis.

Considering the high percentages of 9'-cis epoxides (2. 4) as compared with the corresponding all-trans forms, and the very mild conditions under which all operations were carried out, it seems doubtless that 9-cisantheraxanthin (2) and 9-cis-lutein epoxide (4) are authentic natural products. In both molecules the cisdouble bond is located near the 5,6-epoxy end (3S,5R,6S)of the molecule. This is in good agreement with the preponderant occurrence of 9-cis-violaxanthin (9) [(3S,5R,6S,3'S,5'R,6'S)-5,6,5',6'-diepoxy-5,6,5',6'-tetrahydro- β , β -carotene-3,3'-diol] in flowers of *Viola tricolor* (60-70%) [10] and with the fact that 9-cis-zeaxanthin (10) [(3R,3'R)-3,3'-dihydroxy- β,β -carotene] is very rare in nature. Similarly, neoxanthin (11) [(3S,5R,6R, 3'S,5'R,6'S)-9'-cis-5',6'-epoxy-6,7-didehydro-5,6,5',6'tetrahydro- β , β -carotene-3,5,3'-triol], whose counterpart cannot exist because of the peripheral allenic bond, is very common in nature [11,12]. All these observations demonstrate the stability of the 9-cis type configuration of epoxy carotenoids as compared with that of non-epoxy carotenoids in nature.

The individual appearance of 9-cis-antheraxanthin (2) and 9-cis-lutein epoxide (4) might be explained in one of two ways or by a combination of the two: (i) They are formed by stereoselective biosynthesis or by stereo-

Table 1. Quantitative distribution of the individual isomers in a representative group of higher plants (expressed as percentage of total

Lilium candidum 55.0	Calendula officinalis (yellow)	Calendula officinalis			ī		Cansicum
55.0		(orange)	Helianthus annuus	Helianthus debilis	Chrysanthemum indicum 'Champion'	Citrus annum aurantium (red)	annuum (red)
55.0							
ı	4.0	4.3	1	14.0	1	136	١
			1	<u>}</u>		<u> </u>	' i
8.9	ı		1	4.2	١	11	
				!		:	
-	8.3	4.1	25.7	1	10.7	١	
1	I	1	I	1	43.8	J	ļ
1	7.2	6.2	27.6	1	9'9	1	١
			!		}		
1	4.3	2.3	+	1.3	96	1	ļ
1	3.2	2.2	+	1.2) oc	!	
1	8.6	4.6	20.4	55.4	4.2	36	İ
					!	2	
ļ	l	1	1	1		1	0.7
1	1	1	1		1	1	٠,
1		1	I	1	i	I	33.2
	11 111 111	·	4.3 3.2 8.6 1	7.2 6.2 4.3 2.3 3.2 2.2 8.6 4.6	7.2 6.2 27.6 4.3 2.3 + 3.2 2.2 + 8.6 4.6 20.4 5	7.2 6.2 7.6	7.2 6.2 7.6 - 43.8 4.3 2.3 + 1.3 9.6 3.2 2.2 + 1.2 3.8 8.6 4.6 20.4 55.4 4.2 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Table 2. Quantitative distribution of 9-cis-, 9'-cis- and all-trans-stereoisomers in a representative group of higher plants (expressed as percentage of a certain stereoisomeric set*)

Pigments	Lilium candidum	Calendula officinalis (yellow)	Calendula officinalis (orange)	Helianthus amus	Helianthus debilis	Chyrsanthemum indicum 'Champion'	Citrus aurantium	Equilibrium mixture izomerized by iodine‡
Antheraxanthin								
9-cis	77.8	100.0	100.0	1	76.9	1	92.5	12.8
9'-cis	1	1	1	ļ	1	1	ı	11.9
all-trans	9.6	ļ	1		23.1	1	7.5	51.3
Lutein epoxide								
9-cis		53.5	39.8	43.2]	15.5		10.9
9'cis	1	l	I	I	1	63.4	1	8.9
all-trans		46.5	60.2	46.4	1	9.6	1	56.6
Lutein								
9-cis	1	26.7	25.3	+	2.2	54.5	1	12.0
9'-cis		19.9	24.2	+	2.0	21.6	ļ	11.0
all-trans	l	53.4	50.5	2.96	93.9	23.9	100.0	0.09

*Including the total cis-trans isomeric forms observed.

†In traces.

‡ For comparison.

selective stereomutation from the all-trans forms, and after they have been formed their configuration is protected against photo-induced stereomutation. (ii) Both counterparts are formed by non-stereoselective biosynthesis or stereomutation, but only the 9-cis form is protected stereoselectively against photoisomerization.

EXPERIMENTAL

Methods. The general methods, including instrumentation, zone chromatography, identification and quantitative determination of the individual carotenoids have been described elsewhere [13]. All operations were performed in darkness. The pigments on the chromatograms are listed in the order of decreasing adsorption affinities.

Preparation of the authentic key-isomers (1,2,5-8) is described elsewhere [2].

Pigment isolation. The samples $(4-10\,\mathrm{g})$ were collected in MeOH and kept for dehydration at $4-6^\circ$ in darkness for 24 hr. Then the methanolic solns were filtered and the materials were homogenized with cold MeOH in an electric blender. The extractions were completed with $\mathrm{Et}_2\mathrm{O}$, and the combined MeOH and $\mathrm{Et}_2\mathrm{O}$ extracts were washed with $\mathrm{H}_2\mathrm{O}$, dried $(\mathrm{Na}_2\mathrm{SO}_4)$ and saponified with 30% methanolic KOH for 12 hr. Finally, the

Et₂O solns were washed free from alkali with H_2O , dried (Na_2SO_4) , evapd to dryness in vacuo, dissolved in C_6H_6 , and chromatographed on $CaCO_3$ (Biogal, Hungary) with a C_6H_6 -petrol $(40-60^\circ)$ mixture (4:1). In several cases, the zones of 9(9')-mono-cis-isomers were subjected to re-chromatographies on $CaCO_3$ with C_6H_6 -Me₂CO (100:1) for perfect sepn.

Biological materials. Lilium candidum (Pécs, 1976). Pigments in anthers: violeoxanthin, 9-cis-antheraxanthin (2), dicis-violaxanthin, violaxanthin, dicis-antheraxanthins, antheraxanthin and lutein.

Starting with 45 g (dry wt) of anthers, 30 mg of 2 were obtained. It crystallized from MeOH; mp 115°; UV λ_{\max}^{CeHo} nm (log ε): 483 (4.99), 453 (5.05) and 430 (4.88). The pigment was inseparable from authentic 2 on a mixed chromatogram [CaCO₃, C₆H₆-Me₂CO(100:1)], but it separated from its authentic counterpart (1). A furanoid oxide test [6] of 2 gave 85% of all-trans mutatoxanthin epimers and 15% of mono-cis epimers (λ_{\max}^{CeHo} shifts are 5 nm). For comparison, 1 yielded 100% of mono-cis mutatoxanthins under the same conditions.

Citrus aurantium (*El-Asnam d'Algire*, 1978). Pigments in pulp: an unidentified minor pigment, 13-cis-violaxanthin, violeoxanthin, cis-luteoxanthin, 9-cis-antheraxanthin (2), luteoxanthin epimers, a mixture of cis-zeaxanthin and cis-luteoxanthin, mutatoxanthin, luteoxanthin epimer, violaxanthin, antheraxanthin, zeaxanthin, lutein and β -carotene.

Calendula officinalis (yellow) (Pécs, 1979). Pigments in petals: violeoxanthin, auroxanthin, cis-luteoxanthin, 9-cis-lutein epoxide (4), luteoxanthin, cis-flavoxanthin, 9'-cis-lutein (5), 9-cis-lutein (6), flavoxanthin, lutein epoxide, lutein and β -carotene.

Calendula officinalis (orange) (Pécs, 1979). Pigments in petals: violeoxanthin, auroxanthin, cis-luteoxanthin, 9-cis-antheraxanthin (2), 9-cis-lutein epoxide (4), luteoxanthin, an unidentified minor pigment, 9'-cis-lutein (5), 9-cis-lutein (6), mutatoxanthin, flavoxanthin, lutein epoxide, lutein, lycopene and β -carotene.

Helianthus annuus (*Pécs*, 1978). Pigments in petals: 13-cis-violaxanthin, violeoxanthin, mixture of 13-cis- and 13'-cis-lutein epoxide, 9-cis-lutein epoxide (4), 9(9')-cis-lutein(s) (in traces), violaxanthin, lutein epoxide and lutein.

Petals (20 g dry wt) were worked up on a preparative scale yielding 25 mg of 4. It crystallized from a mixture of C_6H_6 and petrol (30–40°); mp 88°; UV $\lambda_{\max}^{C_6H_6}$ nm (log ε): 478 (4.92), 448 (4.93) and 424 (4.74). The pigment was inseparable from authentic 4 on a mixed chromatogram [CaCO₃, C_6H_6 –Me₂CO (100:1)], but it separated from its counterpart (3). A furanoid oxide test [6] of 4 resulted in 87% of all-trans furanoid oxide epimers (chrysanthemaxanthin and flavoxanthin) and 13% of mono-cis furanoid oxides ($\lambda_{\max}^{C_6H_6}$ shifts are 4 nm). For comparison, 3 gave 14% of all-trans and 86% of mono-cis furanoid oxide under the same conditions.

Helianthus debilis (*Pécs*, 1978). Pigments in petals: 13-cis-violaxanthin, violeoxanthin, 9-cis-antheraxanthin (2), 13(13')-cis-lutein(s), 9'-cis-lutein (5), 9-cis-lutein (6), di-cis-violaxanthin, antheraxanthin and lutein.

Chrysanthemum indicum 'Champion' (vicinity of Pécs, 1980). Pigments in petals: an unidentified pigment (in traces), violeoxanthin, 13(13')-cis-lutein epoxide(s), 9'-cis-lutein epoxide (3), 9-cis-lutein epoxide (4), 9'-cis-lutein (5), 9-cis-lutein (6), di-cis-lutein epoxides (?), lutein epoxide, lutein and an unidentified pigment with epiphasic properties.

Viola tricolor ($P\acute{e}cs$, 1978). Pigments in petals: 13-cis-violaxanthin, violeoxanthin, 9-cis-antheraxanthin (2), luteoxanthin, di-cis-violaxanthins, violaxanthin, antheraxanthin, lutein and β -carotene.

Capsicum annuum lycopersiciforme rubrum (Pécs, 1980). Pigments (adsorbed above capsorubin) in fruits: cis-capsorubins, 13-cis-capsanthin, 13'-cis-capsanthin, 9-cis-capsanthin (7), 9'-cis-

capsanthin (8), capsorubin, etc. It is noted that 9'-cis-capsanthin (8), as a result of mixed chromatography with authentic 7, adsorbs between 7 and capsorubin.

Acknowledgements—The authors wish to thank Mrs. M. Toth for skilful assistance in the chromatographic work.

REFERENCES

- 1. Szabolcs, J. (1976) Pure Appl. Chem. 47, 147.
- Baranyai, M., Molnár, P., Szabolcs, J., Radics, L. and Kajtár-Peredy, M. (1981) Tetrahedron 37, 203.
- 3. Zechmeister, L. (1962) Cis-trans Isomeric Carotenoids Vitamins A and Arylpolyenes. Springer, Wien.
- Weedon, B. C. L. (1971) in Carotenoids (Isler, O., ed.) pp. 267-323. Birkhäuser, Basel.

- Goodwin, T. W. (ed.) (1976) in Chemistry and Biochemistry of Plant Pigments, Vol. 1, pp. 225-261. Academic Press, London.
- Tóth, Gy., Kajtár, J., Molnár, P. and Szabolcs, J. (1978) Acta Chim. Acad. Sci. Hung. 97, 359.
- 7. Eugster, C. H. (1979) Pure Appl. Chem. 51, 463.
- 8. Molnár, P. and Szabolcs, J. (1980) Phytochemistry 19, 623.
- 9. Molnár, P. and Szabolcs, J. (1980) Phytochemistry 19, 633.
- Moss, G. P., Szabolcs, J., Tóth, Gy. and Weedon, B. C. L. (1975) Acta Chim. Acad. Sci. Hung. 87, 301.
- Mallams, A. K., Waight, E. S., Weedon, B. C. L., Cholnoky, L., Györgyfy, K., Szabolcs, J., Krinsky, N. I., Schimmer, B P., Chichester, C. O., Katayama, T., Lowry, L. and Yokoyama, H. (1967) Chem. Commun. 484.
- 12. Tóth, Gy. and Szabolcs, J. (1980) Phytochemistry 19, 629.
- 13. Tóth, Gy. and Szabolcs, J. (1970) Acta Chim. Acad. Sci Hung. 64, 393.